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Summary 

Attempted reaction of carbon centered radicals with crotyltri-n-butylstannane 
leads not to C-C bond formation as with 2-propenyltri-n-butylstannane, but to 
hydrogen abstraction resulting in production of butadiene and tri-n-butylstannyl 
radicals. 

Recently we reported [ 11 upon a free radical chain process for C-C bond for- 
mation which proved remarkably successful with highly functionalized organic 
substrates, in particular those sensitive to reductive elimination reactions, as sum- 
marized in equation 1 below for the simple case of conversion of bromocyclo- 
hexane to allylcyclohexane. The purpose of our present discussion is to disclose a 
serious competing side reaction which occurs upon alkyl substitution of 2- 
propenyltri-n-butylstannane in the 3 position of the propenyl unit. As a result, 
stannanes such as 2-butenyltri-n-butylstannane are ineffective reagents for util- 
ization in such “ally1 transfer” reactions [ 21. 

Br 

For the present study, we selected substrates which had been previously 
shown to undergo smooth, reproducible, and high yield reactions with 2- 
propenyltri-n-butylstannane [l] (hereafter referred to as allyltri-n-butylstannane, 
1) and studied their reaction with 2-butenyltri-n-butylstannane [ 31 (hereafter re- 
ferred to as crotyltri-n-butylstannane, 2). Precursors to carbon centered radicals 
were allowed to react with this reagent using various initiation methods and 
temperatures and the products produced were isolated by column chromatog- 
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TABLE 1 a 

Run Substrate Stannane Conditions (yield) Product 

Ph 
8r 

Ph 
w 

0 
0 

3 

2 A (0) 
2 B (78) 

2 c (70) 

2 D (0) 

Ph 
C”3 

Ph 
p 0 

4 

I-Bromodecane 

5 

2 

2 

A (0) 

C (52) 
n-Decane 

6 

2 A (0) 

IO A (66) 

7 

a (A) tOlUene, 80°G AIBN, 8 h; (B) ~Yhlt?, reflux, di-t-butylperoxide, 8 h; (C) chlorobenzene, reflux, di_t_ 
butulperoxide, 8 h; (D) toluene, hu, 25’C, 2 h [lo]. 

raphy, and/or analyzed by gas chromatography. Structures were determined by 
routine spectroscopic methods and compared with authentic or independently 
synthesized samples. Note equation 2 below. Products (and chemical yields) are 
given in Table 1. 

R-X 

vSnBu3 

> Products (2) 

“Initiator, T” Solvent 

Not surprisingly [4], this stannane was found to be less reactive than allyltri-n- 
butylstannane towards carbon centered radicals. In general, chemically initiated 
reactions at 80°C in toluene failed to lead to detectable [ 51 levels of product for- 
mation (TLC, NMR, VPC) even though conditions duplicated those utilized suc- 
cessfully previously with allyltri-n-butylstannane. The photochemical protocol [l] 
(X > 300 nm, ambient) was similarly unsuccessful. 

Consumption of starting materials was observed, however, under more forcing 
conditions. For example, lactone 3 was allowed to react with crotyltri-n-butyl- 
stannane (2) (2.0 eq.) in refluxing xylene (initial substrate concentration 0.5 M) 
with di-t-butylperoxide as initiator [ 61. After 8 h, complete consumption of 
starting material (TLC [7] Rf 0.15 in 10% THF/hexanes) was noted with produc- 
tion of a faster running product (TLC Rf 0.21 in 10% THF/hexanes). Isolation by 
column chromatography afforded the reduced product 4 in 78% isolated yield. 
Note equation 3. 
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Br 

CH3A SnBu3 

3 
Xylene; Reflux 

Initially, we were unsure as to the origin of the new hydrogen atom in 4 since 
xylene, a potential hydrogen donor, was employed as solvent. However, the same 
result was observed utilizing non-hydrogen donating solvents (e.g. chlorobenzene) 
with 3 and other substrates (Table 1, vide infra), and, moreover, xylene and 
toluene were successfully utilized as solvents with allyltri-n-butylstannane. Thus 
it would appear that crotyltri-n-butylstannane is the source of hydrogen which 
leads to 4 [ 81. Mechanistic reasoning (note equation 4 below) would suggest that 
butadiene should be produced in such reactions. This expectation was easily ver- 
ified by trapping butadiene with bromine after completion of reaction (run 6, 
Table 1) [ 91. 

“initiation” 
R-X ______f 

CH3wSnBu3 

(4) 

R-H + e $- sSnBu3 

*SnBu;j + R-X ___f XSnBu3 + .R $t& 

In one case, we attempted to utilize a mixture [ 21 of crotyltri-n-butylstannane 
(2) and 3-(tri-n-butylstannyl)-l-butene (10) to effect “ally1 transfer” from the 
presumably more reactive isomer 10 (note equation 4), even though this material 
is known [3] to undergo facile isomerization to its more stable cogener 2. In the 
event, a ca. 6/4 mixture of 2 and 10, produced by reaction of Bu$nCl with the 
Grignard reagent prepared from 3-chloro-1-butene, was reacted with substrate 7 
(note run 8, Table 1) at 80°C in toluene. It should be noted that, due to the pre- 
ponderance of the undesired stannane in the mixture utilized, a ca. 10 fold excess 
of stannane was employed. The desired ally1 transfer product, 9, was obtained 
along with reduced product 8 in a ratio of ca. l/l. (Note equation 5) 

Since 7 is unreactive with crotyltri-n-butylstannane (2) under the conditions 
utilized in this case (note run 7 above), it would appear that 10 is an even more 
powerful hydrogen donor than 2. Given the difficulty of preparing 10 uncontam- 
inated with 2, we are not able to verify this point. However, only the parent allyl- 
tri-n-butylstannane or derivatives with alkyl substitution in the 2 position of the 
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O 7 

H 0 ;-_; 8 

H 
0 

CH3 

k-i Bu3Sn \ 
IO 
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CH3 

\ 

2 
- 

SnBu3 

Toluene, 80° 

AIBN, 8 h. 

H 

(3 is-a 9 

0 I 

(5) 

ally1 unit have to date been used without complication in the ally1 transfer reac- 
tion. Investigations on the scope of such reactions as a function of structure in 
the organostannane partner are the subject of ongoing investigations in our 
laboratories. 
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